
Abstract. The self-consistent ®eld (SCF) for molecular-
interactions algorithm, particularly devised to compute
intermolecular interactions, is extended to the case in
which one of the two interacting fragments is an open
shell system. The method excludes the basis set super-
position error in an a priori fashion. To preserve the
simplicity of the standard SCF procedure, Guest and
Saunders equations concerning the open shell fragment
are modi®ed at the cost of a negligible complication with
respect to the usual algorithm.
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1 Introduction

In this paper we concentrate on the problem of avoiding
the basis set superposition error (BSSE) in the self-
consistent ®eld (SCF) treatment of open shell systems by
means of an a priori strategy.

It is well known that the BSSE represents a serious
problem and can signi®cantly a�ect the reliability of
intermolecular potentials between weakly interacting
systems, such as van der Waals molecules or hydrogen
bonded complexes, when a variational approach is
employed.

Many attempts have been made during the last 30
years to correct its e�ects. Among them, the counter-
poise method (CP) proposed by Boys and Bernardi [1]
is certainly the most widely used for an a posteriori
correction of standard SCF results, and was recently
reviewed by van Duijnevelt et al. [2].

We have currently proposed the self-consistent ®eld
for molecular interactions (SCF-MI) method [3], which
prevents the introduction of BSSE in the case of closed
shell systems, and it was formulated so as to be easily
incorporated into the existing packages which evaluate
gradients and force constants.

Here we extend the theory to the case in which one of
the two interacting fragments is characterised by an
open shell con®guration. Also in this case, the SCF-MI
wave function is size consistent, and intramolecular
relaxation e�ects are naturally taken into account.

A few systems will be presented as test examples.
HeO2 is a van der Waals molecule which has been in-
tensively studied in spectroscopic and scattering experi-
ments and represents a prototype of van der Waals
molecules containing oxygen. In this case the SCF study
serves as the necessary starting point for a full ab initio
calculation of the intermolecular potential. The other
examples considered are the He-Cu and He-Ag systems,
where open shell systems interact with a closed shell
partner. Since helium di�raction from surfaces is used
for surface structure determination, the calculation of a
correct ab initio SCF potential can provide the necessary
information to de®ne model potentials essential for
the application of pairwise additive potential theory.
Nevertheless these results are not intended to provide
new reliable potentials; this would be achieved by
approaching the Hartree-Fock (HF) limit with a high-
quality SCF-MI wave function and subsequently adding
dispersion terms, which are fundamental in the treat-
ment of non-polar systems such as those considered in
the present work.

As a further example of potential application of the
SCF level of theory, we considered the complex NO-
H2O. Although the corresponding system involving HF
has been already studied [4], no literature is available for
the interaction with water.

The di�erence between the SCF, SCF-CP and the
SCF-MI procedures depends exclusively on the basis set
employed and must disappear as the basis set is enlarged
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so as to approach the HF limit. While it is accepted that
the CP procedure removes all the BSSE in full-CI cal-
culations [2], such a numerical demonstration cannot be
given for the SCF wave function. The SCF-MI method
is BSSE free by construction and it appears worthwhile
to compare the two procedures when truncated basis sets
are employed.

2 Theory

In this section the theory is presented in compact form:
details of the derivations and general mathematical
treatment are available elsewhere [5].

The one-determinant wavefunction W of the super-
system AB ± where A is closed shell and B is open shell ±
is constructed from orbitals which are not assumed to be
orthonormal. To avoid the introduction of the BSSE, we
set the constraint that the orbitals of fragment A are
expanded exclusively in the space of the basis functions
centred on A, and that the orbitals of fragment B in the
basis functions centred on B. In this way the BSSE is
completely avoided in an a priori scheme.

The SCF-MI wave function W for the supersystem
AB is:

W � N !� �ÿ1
2A
h
/A
1

ÿ
1
�

�/A
1

ÿ
2
�

. . . �/A
NA

ÿ
2NA

�
/B
1

ÿ
2NA�1

�
�/B
1

ÿ
2NA� 2

�
. . .

. . . �/B
NB

ÿ
2NA � 2NB

�
u1

ÿ
2NA � 2NB � 1

�
. . . un

ÿ
N
��
�1�

where /A
1 . . . /A

NA
represent the NA doubly occupied

orbitals of fragment A; /B
1 . . . /B

NB
are the NB

doubly occupied orbitals of B, while u1 . . . un are the n
singly occupied orbitals (with parallel spins) of frag-
ment B. Obviously N � 2NA � 2NB � n is the total
number of electrons. Each orbital appearing in Eq. (1)
is expressed as a linear combination of atomic basis
functions v.

We partition the total basis set v � vkf gM
k�1 into two

subsets, vA � �vAp 	MA

p�1 centred on fragment A and

vB � �vBq	MB

q�1 centred on fragment B�M � MA �MB�,
and expand the orbitals of the two fragments in the
following way:
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In matrix form:

UA � vATA UB � vBTB u � vBVB:

No orthogonality constraints are imposed on the
orbitals of di�erent monomers, which are left free to
overlap one another.

Collecting the doubly occupied molecular orbitals in
a single row vector U � �UA..

.
UB�, we may write

U � vT:

It is also possible to write

u � vV:

In order to write the energy expression for the Slater
determinant (1) it is useful to orthonormalise its orbitals
so as not to alter the wave function. To this aim, the N c

doubly occupied orbitals of the closed shell system must
®rst be orthonormalised within themselves:

U! U0 � vT0

where

T0 � T�TyST�ÿ1
2:

The closed shell density matrix Rc takes the form:

Rc � T�TyST�ÿ1Ty
Successively, the single occupied orbitals u are ortho-
gonalized to the U0, and these orbitals within themselves.

u! u0 � vV0

V0 � �1ÿ RcS�V�Vy�Sÿ SRcS�V�ÿ1
2:

It is then possible to de®ne the open shell density matrix
R

o

as:

Ro � �1ÿ RcS�V�Vy�Sÿ SRcS�V�ÿ1Vy�1ÿ SRc�:
S is the overlap matrix over the atomic basis set:

Spq � vpjvq


 � � Z v�p�r�vq�r� dv p; q � 1 . . . M :

The energy expression may be written in the form:

E � 2
�
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with p; q; r; s � 1 . . . M .
The variation of the energy may be expressed as the

sum of two terms, one depending on the variation of the
T matrix, and the second on the variation of the V
matrix:
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dE � dET � dEV �3�
with

dET � TrdTy �1ÿ SRc�FTT�TyST�ÿ1
h i

� c.c.

dEV � TrdVy

�1ÿ SRc ÿ SRo�Fo�1ÿ RcS�V�Vy�Sÿ SRcS�V�ÿ1
h i

� c.c.

The matrixes FT, Fc, Fo and P are de®ned as follows:

FT � 2Fc � PyFoPÿ FoPÿ PyFo

Fc � H� 2G�Rc� �G�Ro�
Fo � H� 2G�Rc� �G0�Ro�
P � �1ÿ RcS�V�Vy�Sÿ SRcS�V�ÿ1VyS:
FT, Fc and Fo are hermitian matrices and c.c. means the
complex conjugate.

We emphasise that in these expressions for E and dE,
T, V, dT and dV are arbitrary matrices.

We impose now on the matrices T, V and on their
variations ±dT and dV ± the following block structures:

T � TA 0
0 TB

� �
V � 0

VB

� �

dT � dTA 0
0 dTB

� �
dV � 0

dVB

� �
�4�

In order to specialise the expression of dE when the
matrices T, dT, V and dV have the block diagonal
structure given above, we de®ne the two matrices RA

and RB:

RA � TA�TAySAATA�ÿ1TAy

RB � TB�TBySBBTB�ÿ1TBy �5�
where the overlap matrix S is written in partitioned
form:

S � SAA SAB

SBA SBB

� �
� vA

�� vA
 �
vA
�� vB
 �

vB
�� vA
 �

vB j vB
 �� �
:

dE may be put in a very compact form by imposing the
following orthonormality conditions:

TAyRATA � 1 NA� �

TByRBTB � 1 NB� �

VByRBVB � 1 n� �

VByRBTB � 0 n�NB� �

�6�

with

RA � SAA ÿ SABRBSBA

RB � SBB ÿ SBARASAB
�7�

Equation 3 now reads

dE � dETA � dETB � dEVB

where
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� �
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A
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dETB � TrdTBy 1 MB� � ÿ RBTBTBy
� ��ÿRBARA..

.
1 MB� ��FT

�
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� � �
1 MB� �

264
375TB � c:c:

� TrdTBy 1 MB� � ÿ RBTBTBy
� �

FT
B
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dEVB � TrdVBy 1 MB� � ÿ RBTBTBy ÿ RBVBVBy
� �

� �SBARA..
.
1 MB� ��Fo
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� � �
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264
375VB � c:c:
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VB� c:c:

The minimisation of the energy E is performed by an
iterative procedure in which the elementary step consists
of two simultaneous rotations in the two spaces of
the fragments A and B, respectively. The stationary
condition dETA � 0 to be satis®ed by an arbitrary vari-
ation dTA implies the solution of the ``pseudo secular''
system:

FT
A

TA � RATADA

TAyRATA � 1 MA� �

�
where DA is a diagonal matrix.

As far as fragment B is concerned, it is convenient
to introduce the matrix ZB of the virtual orbitals of
order MB � �MB ÿ NB ÿ n�. ZB is subject to ortho-
normality constraints so that the �MB �MB� matrix

Y � �TB..
.
VB..

.
ZB
�
satis®es the condition YySBY � 1 MB� �.

Following Guest and Saunders [6], the elementary step ±
which guarantees dETB < 0 and dEVB < 0 at ®rst order ±
consists in the unitary transformation Y! Y0 � YU,
where U is the matrix of the eigenvectors of the matrix H
de®ned as

H �
TByFT

B

TB TByFT
B

VB TByFT
B

ZB

VByFT
B

TB VByFV
B

VB � a1n VByFV
B

ZB

ZByFT
B

TB ZByFV
B

VB ZByFV
B

ZB � b1MBÿNBÿn

24 35
where a and b are empirical level shifting parameters.

We have developed an algorithm which, starting from
an initial guess, proceeds iteratively. Each cycle com-
prises the following steps:

1. Guess for TA and Y � �TB..
.
VB..

.
ZB�;

2. Evaluation of RA and RB using (5);
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3. Construction of RA and RB using (7);
4. Orthonormalisation of TA and Y:

TA  TA TAyRATA
ÿ �ÿ1

2

TB  TB TByRBTB
ÿ �ÿ1

2

VB  1 MB� � ÿ TBTByRB
� �

VB

VB  VB VByRBVB
ÿ �ÿ1

2

ZB  1 MB� � ÿ TBTByRB ÿ VBVByRB
� �

ZB

ZB  ZB ZByRBZB
ÿ �ÿ1

2;
5. Evaluation of the density matrixes Rc and Ro

Rc � T�TyST�ÿ1Ty

Ro � �1ÿ RcS�VVy�1ÿ SRc�
In the expression of Ro the condition Eq. (6)
introduces the simpli®cation

Vy Sÿ SRcS� �V � 1;
6. Check the convergence of the density matrix

elements;
7. Evaluation of E;
8. Construction of the matrixes FT

A

, FT
B

and FV
B

;
9. Solution of the ``pseudo secular'' Eq. (8) for

fragment A;
10. Solution of HU = UD, with D diagonal and

UyU � 1;
11. Y YU;

Go back to 2

3 Results

In order to test the algorithm and its general applica-
bility, we have studied the Hartree-Fock contribution
to the interaction potential of He with a series of
important partners such as O2, Cu and Ag. The system
NO-H2O, where the strong dipole of water interacts
with the small dipole of the NO radical, represents a
good test example for which the HF level of theory is
expected to be already acceptable. For this system a
rather complete comparison between the SCF, SCF-CP
and SCF-MI results for a series of basis sets is
presented.

3.1 He-O2

Figures 1 and 2 show the two paths of approach of He to
O2 considered in this work. For the basis set employed
see van Lenthe and van Duijneveldt [7]. The interatomic
distance of O2; rOAO, was maintained at the experimental
value of 2.282 a.u.

In Tables 1 and 2 we report the SCF-MI energies and
the CP corrected SCF values computed using the GA-
MESS-UK suite of programs [8]. All the curves are re-
pulsive. The SCF-MI results turn out very close to the

SCF values of van Lenthe and van Duijneveld and to the
CP corrected results at long distance; at short distances,
however, they di�er and become more repulsive. This is
to be ascribed to limitations of the basis set employed,
which was not optimised for the SCF-MI procedure, and
to the BSSE a�ecting the standard SCF results, which is
not completely removed by the CP correction. The depth
of the potential well for the C2m approach, as appearing
in the ESMSV potential of Faubel et al. [9], which
probably remains the most reliable potential known so
far, is of the order of 0.1 mH, a value which in itself
emphasises the importance of a correct treatment of the
BSSE.

Our SCF value for O2 is lower than that reported by
van Lenthe and van Duijneveld [7], because these au-
thors used spherical harmonic d functions, while in the
present calculation sets of six d functions are employed.
Agreement with the standard SCF open shell procedure

Fig. 1. HeAO2: perpendicular path of approach

Table 1. SCF-MI, CP corrected SCF, and SCF interaction energies
for He-O2, perpendicular path of approach. Basis set of Ref. [7]
(distances in a.u. and energies in mhartree)

R (He-O2) DESCF-MI DECP DESCF

12.0 0.00 0.00 0.00
8.0 0.00 0.00 0.00
7.0 0.01 0.01 0.00
6.0 0.11 0.11 0.08
5.5 0.33 0.31 0.28
5.0 0.99 0.93 0.89
4.5 2.90 2.68 2.64
4.0 8.26 7.63 7.57

Table 2. SCF-MI, CP corrected SCF, and SCF interaction energies
for He-O2, linear path of approach. (Basis set of Ref [7]). (distances
in a.u. and energies in mhartree)

R (He-O2) DESCF-MI DECP DESCF

12.0 0.00 0.000 0.00
8.0 0.01 0.01 0.00
7.0 0.07 0.07 0.06
6.0 0.76 0.72 0.70
5.5 2.40 2.25 2.23
5.0 7.38 6.92 6.88
4.5 22.19 20.78 20.68
4.0 65.52 60.70 60.44

Fig. 2. HeAO2: collinear path of approach
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incorporated into the GAMESS-UK program [8] is
con®rmed.

3.2 He-Cu

We have performed all electron calculations (Table 3)
using a basis set derived from that employed by
Toennies et al. [10] and by Bagus et al. [11] on Cu and
one derived from MatõÂ as et al. [12] on He (Tables 4a and
b). The results show that SCF, SCF-CP and SCF-MI
procedures converge to the same ®nal result.

3.3 He-Ag

As a more signi®cant test, as far as the total number of
the electrons involved is concerned, we have considered
the He-Ag system. Also in this case we have performed
all electron calculations (Table 5) using a basis set of
reasonable extension. For He we employed the same set

Table 3. SCF-MI, CP corrected SCF, and SCF interaction energies
for He-Cu. The basis set is reported in Table 4 (distances in a.u.
and energies in mhartree)

R (He-Cu) DESCF-MI DECP DESCF

12.0 0.00 0.00 0.00
8.0 0.19 0.16 0.15
7.0 0.59 0.52 0.50
6.0 1.78 1.59 1.51
5.5 2.99 2.74 2.58
5.0 4.94 4.63 4.41
4.5 8.07 7.70 7.42
4.0 13.24 12.67 12.34
3.5 22.23 21.25 20.80

Table 4a. He basis set for the He-Cu system

Orbital Exponent Coe�cient

s 4840.888547 0.000059
723.108918 0.000463
164.299706 0.002422
46.636262 0.009995

s 15.277787 0.034249
5.526897 0.096302

s 2.132879 1.0
s 0.849674 1.0
s 0.343643 1.0
s 0.138709 1.0
s 0.055989 1.0
p 5.526897 0.040963

2.132879 0.145166
0.849674 0.375520

p 0.343643 1.0
p 0.138709 1.0
p 0.055989 1.0
d 2.132879 0.099399

0.849674 0.407386
d 0.343643 1.024217

0.138709 0.864263
d 0.055989 1.0
d 0.022560 1.0
f 0.055989 1.0

Table 4b. Cu basis set for the He-Cu system

Orbital Exponent Coe�cient

s 337200.0 0.000277
50072.9 0.002169
11373.4 0.011216
3239.82 0.044615
1071.97 0.138363
395.099 0.312543
158.399 0.410608
67.3591 0.214510
22.2983 0.017655

s 158.399 )0.076904
67.3591 )0.053763
22.2983 0.521222
9.39357 0.542653
2.57848 0.052418

s 9.39357 )0.111324
2.57848 0.618728
0.964080 0.493372

s 0.964080 )0.101389
0.150003 0.156472

s 0.079035 1.0
s 0.031927 1.0
s 0.012897 1.0
s 0.004299 1.0
p 2245.29 0.002255

532.106 0.018408
172.195 0.086463
65.3239 0.254486
27.0551 0.434210
11.7435 0.333857
4.69382 0.061723

p 27.0551 )0.022188
11.7435 0.023927
4.69382 0.420277
1.90667 0.628484

p 0.711445 1.0
p 0.141340 1.0
p 0.030833 1.0
p 0.010278 1.0
d 53.65 0.025972

15.07 0.141029
5.104 0.347976
1.727 0.448865

d 0.5283 1.0
d 0.1491 1.0
d 0.0421 1.0
d 0.01403 1.0
f 1.0 1.0
f 0.28220 1.0
f 0.07970 1.0
g 0.1 1.0

Table 5. SCF-MI, CP corrected SCF, and SCF interaction energies
for He-Ag. The basis set is reported in Tables 4a and 6 (distances in
a.u. and energies in mhartree)

R (He-Ag) DESCF-MI DECP DESCF

12.0 0.00 0.00 0.00
8.0 0.28 0.24 0.23
7.0 0.81 0.73 0.70
6.0 2.29 2.08 2.04
5.5 3.80 3.47 3.42
5.0 6.29 5.77 5.71
4.5 10.47 9.72 9.65
4.0 18.15 17.07 16.99
3.5 34.73 32.83 32.74
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as used for the system He-Cu (Table 4a); for Ag, the
basis set is obtained by augmenting the set (17s, 11p, 8d)
of ref. [13] by new s, p, d, f and g di�use functions
(Table 6).

The energy curves turn out again to be fully repul-
sive, with the SCF-MI values above the SCF ones. The
results (Table 5) show that the di�erences among
DESCF-MI, DESCF-CP, and DESCF are su�ciently small
and acceptable for this basis set. It is to be emphasised,
however, that the only care required by the SCF-MI
method is that the basis sets on each fragment be
properly balanced and able to describe the long range
behaviour of the wave functions of the interacting
fragments, by including basis functions with su�ciently
small exponents.

3.4 NO-H2O

As a ®nal test, a van der Waals complex involving
molecular fragments has been investigated at the HF
level of the theory. It is well known that weakly bonded
complexes containing open shell molecules are di�cult
to study and little information is available when
hydrogen bonding is involved. However, an important
system in this class which has received attention is the
complexes of closed shell fragments as con®rmed in [14]
forthe H2O-HO system [14]. Here we present a series of
calculations on the NO-H2O complex performed using
several standard and or slightly modi®ed medium size
basis sets (Tables 7±9). The polarisation functions used
have been optimised to maximise the polariszabilities of

Table 6. Ag basis set for the He-Ag system

Orbital Exponent Coe�cient

s 782615.55 1.0
s 116697.35 1.0
s 264657.05 1.0
s 7559.2393 1.0
s 2531.3743 1.0
s 954.42758 1.0
s 393.96647 1.0
s 173.46788 1.0
s 67.292480 1.0
s 30.194935 1.0
s 11.102996 1.0
s 5.6412301 1.0
s 2.1374430 1.0
s 1.0945265 1.0
s 0.48011424 1.0
s 0.11787222 1.0
s 0.041876163 1.0
s 0.014875 1.0
p 6116.6742 1.0
p 1426.6642 1.0
p 458.34731 1.0
p 175.50623 1.0
p 74.964904 1.0
p 34.255544 1.0
p 15.808571 1.0
p 7.4193252 1.0
p 3.3942283 1.0
p 1.4640686 1.0
p 0.56583919 1.0
p 0.21866 1.0
p 0.084509 1.0
d 260.66912 1.0
d 77.125699 1.0
d 28.986678 1.0
d 11.892642 1.0
d 5.1018889 1.0
d 2.1332702 1.0
d 0.83680243 1.0
d 0.28806987 1.0
d 0.10133 1.0
d 0.03540 1.0
d 0.01237 1.0
f 1.0 1.0
f 0.33333 1.0
f 0.11111 1.0
f 0.0374 1.0
g 0.5 1.0

Table 7. SCF-MI, CP corrected SCF, and SCF interaction
energies for geometry 1 of NO-H2O (Fig. 3) (energies in kcal/mol)

Basis set DESCF-MI DECP DESCF

6-311G )1.59 )1.39 ()1.62) )1.99
6-31G )1.62 )1.48 ()1.62) )2.08
6-31��G )1.40 )1.42 )2.00
6-31G** )1.16 )1.20 )2.22
6-31��G** )1.19 )1.18 )2.64
TZV�� )1.50 )1.60 )1.98
TZV��** )1.02 )1.18 )1.89

Table 8. SCF-MI, CP corrected SCF, and SCF interaction energies
for geometry 2 of NO-H2O (Fig. 4) (energies in kcal/mol)

Basis set DESCF-MI DECP DESCF

6-311G )1.21 )1.45 )1.87
6-31G )1.26 )1.45 )1.88
6-31��G )1.15 )1.15 )2.12
6-31G** )1.00 )1.16 )2.22
6-31��G** )1.00 )1.14 )2.10
TZV�� )1.18 )1.12 )1.72
TZV��** )0.94 )0.97 )1.59

Fig. 3. Geometry 1 for the NOAH2O complex

Fig. 4. Geometry 2 for the NOAH2O complex
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several related molecules. For each basis set SCF
(ROHF) CP-SCF and SCF-MI wave functions have
been calculated, determining also the energy minimum
energy geometry. Two equilibrium geometriesy (Figs. 3,
4) of Cs symmetry and comparable stability have been
found by all the SCF techniques employed.

Calculations for geometry 1 (Fig. 3) are summarised
in Table 7. In this geometric con®guration the water
molecule remains of C2m symmetry with the oxygen atom
pointing approximately to the centre of the NO bond.
Molecular orbital analysis of the SCF-MI wave function
shows that the singly occupied orbital of the NO open
shell fragment hasis of p symmetry. The computed
binding energiesy reported are of the order of 1 kcal/mol.
Also in this case, SCF-MI interaction energies are in
close accordance with the corresponding CP corrected
values. For some basis sets, however, (namely 6-311G
and 6-31G) the CP correction procedure overestimates
the BSSE magnitude. In these cases the CP interaction
energy improves only after a further optimisation of the
geometry of the complex with the CP corrected wave
function and agrees with the SCF-MI result (Table 7,
values in parenthesis) [15].

Calculations for geometry 2 (Fig. 4) are reported in
Table 8. This geometric con®guration would involve
a classical linear hydrogen bond between the fragments.
In this case the singly occupied orbital of the open shell
NO fragment is of has r symmetry. Binding energies
reported in Table 10 are comparable with the corre-
sponding values calculated for geometry 1. The SCF-MI
interaction energies and the CP corrected values are still
in close accordance. The OH bond donor donor in-
volved in the hydrogen bond becomes longer than in the
free OH of water.

The small gap between SCF-MI and CP corrected
values infor both the equilibrium structures can be due
to relaxation fragment e�ects [16] not considered at the
SCF-CP level of the theory and to a residual BSSE in the
CP procedure [17].

SCF-MI intramolecular parameters remain un-
changed with respect to the corresponding SCF values;
as expected [15], intermolecular distances result longer,
in accordance with BSSE removal [15]. In Table 9 the
interfragment OAO distance, is generally longer for both
geometries.

All the reported calculations show that the HF in-
teraction for this system is attractive. The inclusion of

zero point vibrational energy and the use of a higher
level of theory is beyond the aim of this work.

4 Conclusions

We have presented the extension of the SCF-MI
algorithm [3] to the more general case of the intermo-
lecular interactions between a closed and an open shell
system. As in our previous work, the BSSE is excluded a
priori, as the expansion of molecular orbitals of each
fragment is permitted only in the basis functions centred
on the fragment itself.

The simplicity of the standard SCF procedure has
been preserved. Guest and Saunders open shell equa-
tions have been modi®ed at the cost of a negligible
complication with respect to the usual algorithm.

The method takes naturally into account the geome-
try relaxation e�ects in polyatomic fragments. As dis-
cussed recently [16], the estimation of the BSSE
correction by the CP methods requires, in addition to the
SCF calculation on the dimer, CP calculations on the
monomers at the geometries of the dimer and the as-
ymptotic monomer. This reduction in computation time
will be signi®cantly important for large systems.

The implementation [17] of the closed shell SCF-MI
method into the GAMESS-US program [18], comprising
standard and direct SCF procedures, gradient and
Hessian evaluation features, has been accomplished.
Work on its inclusion in other standard packages as one
of the available options is in progress.

For all the systems considered we did not observe any
convergence di�culty, while the computing time is
comparable with that of standard SCF procedures.

The SCF-MI a priori strategy of avoiding BSSE is
always correct and the wave function remains size
consistent. This becomes important in the case of
anisotropic potentials, as the errors in the wave
function introduced by the CP procedure ± the sec-
ondary BSSE ± can contribute to alter the resulting
physical picture [19].

The program has been tested by means of a code
based on an iterative ®rst order Brillouin scheme where
the nonorthogonality of the orbitals of the two frag-
ments is directly taken into account by general VB
techniques [20].

A possible criticism might concern the fact that the
SCF-MI procedure does not allow charge transfer ef-
fects to occur. As already discussed previously [3], we
call to mind that the constraints on the SCF-MI
orbitals, UA � vATA;UB � vBTB and U � vBVB, do not
prevent a certain amount of charge transfer to take
place. This can occur because the SCF-MI orbitals UA

and UB are not orthogonal but are allowed to overlap.
In this way the orbitals of A can have tails on B and
vice versa, tails which do not originate from unphysical
nodes imposed by the orthonormalisation process. This
peculiarity is also bene®cial to all the other terms
which are sensitive to the detailed description of the
overlap region, as it provides to the SCF-MI orbitals
the necessary ¯exibility and freedom to adapt to the
e�ects of the physical interactions. For this to be true,

Table 9. SCF-MI and SCF O-O intermolecular distances for
geometries 1 and 2 of NO-H2O (Figs. 3, 4) (distances in angstroms)

Basis set Geometry 1 Geometry 2

SCF-MI SCF SCF-MI SCF

6-311G 3.14 3.14 3.40 3.22
6-31G 3.12 3.11 3.40 3.21
6-31��G 3.21 3.21 3.34 3.18
6-31G** 3.08 3.08 3.26 3.26
6-31��G** 3.29 3.29 3.50 3.22
TZV�� 3.31 3.24 3.21 3.21
TZV��** 3.31 3.31 3.44 3.26
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it is necessary to employ functions which are not
closely localised on the monomers, as required in the
study of van der Waals complexes or hydrogen-bonded
systems.

The extension of the BSSE free SCF-MI strategy for
closed shell systems to include electron correlaction ef-
fects has already been presented [21] and its application
to the study the properties of water turned out to be
extremely promising [21±23].

The advantage of starting from a correctly de®ned
BSSE free HF method in the calculation of intermolec-
ular potentials in van der Waals systems can hardly be
overemphasised.

For a more complete evaluation of the advantages of
the a priori strategy to avoid BSSE see also ref. [24],
where spin coupled valence bond calculations for the
He-LiH system are reported.
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